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91405 O q ,  Fmnce 
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Alslrset We present a theoretical and numerical study of certain propenies of x - 9  
diffraction of Bnite-size RudinShapim and generalized RudinShapim multilayer het- 
crosLTuctum. They are compared with spectra obtained in similar conditions from other 
deterministically disordered multilayer systems, in panicular ?hue-Morsc hctemtruc- 
turn. 

1. Introduction 

In recent years, following the discovery of quasicqMals [I], the importance of de- 
terministic structures having controlled aperiodic disorder described by sequences 
generated by substitutions on a finite alphabet (often a two-letter alphabet) or finite 
automata ( 2 4 ,  has been increasingly recognized. 

Mathematical studies in 2 D  have now already begun [5,  61 and as such models 
in ID have been widely studied, they even have inspired quite a few experiments 
on model systems, in particular on multilayer superlattices made by molecular beam 
epitaxy (MBE). These superlattices have two kinds of layers arranged according to the 
Fibonacci [7-131 and the Thue-Morse sequences (12, 141, both of which are two-letter 
sequences 

Recently finite-size multilayer superlattices arranged according to the "hue-Morse 
sequence have been investigated by high-resolution x-ray diffraction [14] with the 
finding that the singular continuous nature of the infinite lattice diffraction pattern 
(i.e. the Fourier transform of the Thue-Morse sequence) has observable consequences 
for finite samples. Among these consequences are the indexing, in this case, of 
the diffraction peaks by the rationals (2k + 1)/13.2"], IC and n being integers, 
with high accuracy, and the description of peak height evolution with sample size 
and Wavevector by a measurable exponent u,(q). These results emphasize for the 
first time the importance of the nature of the measure associated with the Fourier 
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transform of the sequence generating the aperiodic deterministic disorder under study, 
as defined by the Lebesgue decomposition theorem 

p = PAT + p S C  + P A C  

pAT, psc and pAc being respectively the associated atomic, singular continuous and 
absolutely continuous (with respect to the Lebesgue measure) primitive components 
into which any measure p can be uniquely decomposed. 

Tbe Fibonacci sequence Fourier transform has a purely atomic measure with a 
countable number of peaks, the Thue-Morse sequence Fourier transform is also a 
pure case, but of a singular continuous measure. We shall now be interested in 
the RudinShapiro and the generalized Rudin-Shapiro sequences, and theu Fourier 
transforms, which in the infinite limit are a pure case of the third type of primitive 
measure component, the absolutely continuous one. Thi together with the fact that 
a random sequence also has a purely AC Fourier transform (e.g. 'white noise') led us 
to raise, we believe for the first time in the study of the crystallography of disordered 
systems, the question of the possible existence of criteria allowing specific distinction 
between random and deterministic disorder having an AC Fourier transform by means 
of theoretical as well as of experimental studies of the high-resolution x-ray diffraction 
spectra of appropriate systems, model systems to begin with. We recall that in previous 
work [14], devoted to "hue-Morse disorder, one of us already brought the question 
of the specificity of the relationship between the deterministic generating sequence 
and the resulting x-ray dsraction multilayer spectra. Finally, we note that besides 
purely mathematical studies, 14, 15-17], some of the properties associated with the 
RudinShapiro sequence have been described before [18, 191. Our conclusion can 
be compared with part of the discussion in 1201 based on the study of a different 
problem. 

2. The RudinShapim and generalized Rudin-Shapiru sequences: definitions and 
properties 

2.1. The 'fi property' 
Let a sequence of +1 and -1, { c N ( j ) }  be of length N .  The htensitydquare 
modulus-of its Fourier transform defined as usual is 

Then trivially for every q in [0, I] 

A sequence is said to have the 'fl property' if 
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The sequence of -tl and -1 constructed by Shapiro [U], and then Rudin [16] de- 
scribed below, bas this properly which is shared by the 'generalized Rudin-Shapiro 
sequences' studied in [21] (where it is also proven that for such an infinite sequence, 
to have a bounded Fourier transform intensity, or equivalently the '0 property', 
entails that its spectral measure is absolutely continuous (AC) with respect to the 
hbesgue measure). 

As a consequence, spectra having an associated atomic (AT) measure (e.g. Fi- 
bonacci or paperfolding) or a singular continuom (sc) measure (e.g. 'Ihue-Morse) 
do not have a bounded intensity (we have defined and measured the s cilic expo- 
nents an(q) in the Thue-Morse case in [14]), nor do they have the ' JE" N properly'. 

22.  The Rudin-ShopUo sequence 
The RudinShapiro sequence has been constructed independently by Shapiro [U] 
and Rudin [16] and can be defined in four different yet equivalent ways [4, 17, 181. 

(i) U, munts the parity of the number of times the sequence 11 occurs in the 
binary expansion of n (with possible overlap) [17]. Let 

m 

= C P , ( 4 ) 2 ' .  (4) 
q=0 

With U,, = 0, and u,r{O,l) 

'U2n = U, 

u4n+l = (5)  
u4,+3 = 1 - UZ"+l' 

U, = xP, , (n)P, , (q+ 1) and 
'I 

(ii) As the image 1 of the fixed point of a two-substitution U on a four-letter 
alphabet { A ,  B ,  C ,  D }  

a ( A )  = AB 
u ( B )  = AC 
u ( C )  = DB I U(  D )  = DC. 

(6) 

With initial condition A, we obtain, by iterating U :  

A 
AB 
ABAC 
ABACABDB 
ABACABDBABACDCAC. 

Note that o"(A)  has length 2". With t a projection on the alphabet {O, 1) defined 
bY 

t ( A )  = 0 

t ( B )  = 0 

t ( C )  = 1 

t ( D )  = 1 

(7) 
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we finally have 

0 
00 
0001 
00010010 
0001001000011101 

and some simple algebra shows that the obtained sequence is identical with the above 
recursively defined sequence. 

( i )  The RudinShapiro sequence can also be generated by a two-automaton (see 
for example, [4]). 

(iv) Consider the following double sequence of recurrent polynomials P,(X) and 
Q,(X) of degree 2" - 1, with coefficients fl: 

with Po(X) = Q o ( X )  = 1. Then 

P1(X) = 1 + x 
p , (X)  = 1 + X +  Xz -X3 

Q l ( X ) = l - X  
Q z ( X )  = 1 + x-x2 + x3 

Then it can easily be seen that t, = (-1)"" with U, defined in equation (5). 
en is the RudinShapiro sequence on the alphabet {-l,+l}. When X = ezTiq, 

P,(e2"'q) is the Fourier transform of the RudinShapiro sequence of length 2" as 
indicated below. 

2.3. Generalized Rudin-Shapiro sequences 

Generalized RudinShapio sequences are defined ([21], see also [22]) by an exten- 
sion of the Brillhart-Carlitz definition [17] as the parity of the number of times the 
sequence, 1 t 1, 1 *1, etc. occurs in the binary expansion of n with possible over- 
lapping, where the star * stands for 0 or 1. We shall be particularly interested in the 
simplest case, 1 * 1, which yields for the first few iterations: 

0000010100110110.. . . 
This entails the following definitions for zn on the alphabet {0,1), with zo = 0: 

Zzn = zn 
*gn+l = 'n I 
%+3 = 24nt1 

*a,+5 = 1 - *zn+1 1 %,+7 = 1 - *4nt3. 
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If 

qn = (-1)- 

then q,, is a sequence on the alphabet {-l,+l} with qo = 1 

1)2n = qn 

%n+1 = qn 

?ant3 = q4n+l 

%n+s = -'l2n+l 

'lan+r = -'l4n+3. 

3. Fourier transforms of the RudinShapim and the generalized RudinShapim 
sequences 

3.1. The Rudin-Shapiro sequence 

For a chain of length N ,  the Fourier transform is defined as usual by 

Then, obviously 

and the intensity of the Fourier transform is then 

and in an analogous way: 



and finally 

with initial conditions corresponding to P o ( X )  = Qo(X)  = 1, that is uo = 0, 
uo = -2sin(Zrrq), w0 = 2cos(2nq), which yields in turn ul = 4cos(2xq), 
v1 = -4sin(2nq)cos(4aq), wl = -4sin(2nq)sin(4nq), and so on. 



is the intensity of the Fourier transform of a RudinShapiro chain of length 2*. This 
intensity is known to go to a finite constant when n goes to infinity, in accordance 
with the absolutely continuous character of the measure. An analogous calculation 
has been previously published in [19]. 

An alternative way of calculating this Fourier transform is as follows. 
Let the two-vector U,, he defined as 

Then the following 2 x 2 matrices A, and A, are naturally defined: 

UZntl = [ ] = [ O  ] U, = AIU,,. 
- % n t l  0 - 1  

Then with 

2'-1 

F ( n , q )  = U , e W  
j=O 

it can easily he seen that F verifies the simple equation 

F ( n +  1 , q )  = A O F ( n , 2 q )  +e2""A,F(n ,2q)  

or, if M ( q )  = A, + e2"'qA,, 

F ( n +  l , q ) - =  M ( q ) F ( n , 2 q )  

which recursively yields 

F ( ~ , Q )  = M ( q ) F ( n - 1 , 2 Q ) =  M ( q ) M ( 2 q ) F ( n - 2 , 4 9 )  

= M ( q ) M ( 2 q ) .  . .M(2"-1q)F(0 ,2nQ) .  (31) 

Since for all q, F(0,2"q)  = U,  = [:I for the Rudin-Shapiro sequence, 
(ul  = U,, = l ) ,  CZm(q)  is found as the first component of F ( n , q ) .  

This formalism has the advantage that it extends naturally to generalized Rudin- 
Shapiro sequences. 
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3.2. Generalized Rudin-Shapiro sequences 

Let 

Then the following relationships hold: 

z2n = AoZn 

Zan+1 = A1Z" 

with 

1 0 0 0  
0 0 1 0  

0 0 1 0  
A 0 =  [l 0 0 .] and 

If we define 

we are led as previously to 

with 

M is defined in an identical way as before: 

M (  q)  = A, + eZri9 A 1 

(33) 

1 

A , =  [' 0 - 1 0 0  ' ' 1 .  (34) 

0 0 0 - 1  

M(2"-'q)G(0,2"q)  (36) 

but M is now a 4 x 4 matrix. 
+j2.(q) is now found as the first component of G(n,q). 
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4. Results and discussion of the spectra 

We now proceed to discuss some of the consequences of these properties on the 
x-ray diffraction profiles of finite-size model systems, which we will compare to the 
Thue-Morse studies. 

We assume the model system is in all cases a finite-size multilayer heterostnro 
ture made of two different kinds of plane layers deposited by MBE acmrding to the 
Thue-Morse, Rudin-Shapiro and generalized Rudin-Shapiro sequences. The system 
is investigated with high-resolution x-ray diffraction, the experimental conditions being 
those of [14]. Then, besides the Fourier transform of the finite deterministic gener- 
ating sequence which is in some sense the backbone of the x-ray diffraction profile, 
various other ingredients possibly contribute to the signal actually obtained, among 
which are: 

(i) a background level coming from the diffraction profile of the substrate on 

(ii) a contribution from the entrance slit width for the beam; 
(iii) a contribution from the detector slit width, the effect of which can be easily 

simulated numerically, by simply averaging the Fourier transform intensity over the 
slit width in q. Examples are shown below. 

Comparison of figures l(a) and 2(a) shows the striking differences exhibited by 
the computed spectm. The Thue-Morse situation clearly appears to be on the crystal 
or quasicrystal side with well defined peaks, stable under size change and unbounded 
intensiry; while the Rudin-Shapiro case has, on the contrary, no peak stability under 
sue changes, bounded intensity (in connection with the absolutely continuous char- 
acter of the underlying measure), which obviously goes to a finite constant in the 
infinite limit. These characteristics are also shared by the spectra of the generalized 
Rudin-Shapiro sequence described above (see figure 3). They are not fundamentally 
altered when a detector slit width is simulated in the calculation, producing a certain 
deformation of the signal (in particular line broadening) (see figures l(b), l ( c )  and 

An important common feature of Thue-Morse and Rudin-Shapiro situations is 
the existence of a fixed point for the change q -t 2q which transposes in q-space the 
variations of the sequence length. 

The Thue-Morse intensity which has been known for quite a long time (quoted, 
for example, in [14, 231, see also references therein) 

which the deposition is being made; 

2(c)). 

indicates the privileged role of the value q = 5 while equations (23) and (24) show 
q = 0 modulo 271 to be the fixed point for the Rudin-Shapiro situation. 

In the Thue-Morse case, when q = f or when by multiplying q by a certain finite 
power of two one arrives at the value f for q (i.e. when Q = ( 2 k +  1) / [3 .P])  there 
is an accumulation of intensity. Therefore we see that this tixed point plays a crucial 
role in the definition of the x-ray spectrum. 

In the Rudin-Shapiro situation, when q = 0 modulo 27r or becomes 0 at step n 
after multiplication by a finite number of factors 2, i.e. q = (2k+1)/2p, equation (23) 
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0 
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F y l m  1. (a) The calculatcd intensity of the Fourier transform of the abstract "Ie- 
Morse sequence of length 212 = 4096 (see tat). The number of p i n u  in q is 16384. 
The intensity is unbounded. (b) The same length 86 (a) with a detector slit width of 64 
in q (.- 4%). (c) The same length BS (a )  with a detector slit width of 128 in q (* 8%). 

yields 

or 

U, = 2w,-, 

w ,  = 2u,-, 

vn = -2v n-1 

that is 

%+I = ~ w , - I  

and the intensity then remains constant. However, this constant is not necesardy a 
maximum of the x-ray spectrum, where the peaks are not stable upon size changes. 
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F@m 2. (0) me calculated intensity of the Fourier transform of the abstract Rudin- 
Shapim sequence of length 21° = 1024 (see tat ) .  The number of pints in q is 16884. 
m e  intensity is bounded and normalized. (b) The same as (a) with 2" = 4096. (c)  
me same length as (a) with a detector slit width of 64 in q (- 4%). 

5. Conclusion 

We studied theoretically and numerically the intensity of the Fourier transform 
of finite-size RudhShapiro and generalized RudinShapiro sequences, which is 
bounded in accordance with the 'a property' of these sequences. Comparison 
with the "hue-Morse situation previously studied confirms that deterministic disor- 
der generated by such sequences seems to share-at least from the measure-theoretic 
point of view-many properties of random disorder. 

We are thus led to introduce a tentative classification for the x-ray diffraction 
spectra of these aperiodic deterministic finite-size multilayer heterostructures, based 
on the AT, SC, AC nature of the measure associated with the Fourier transform of the 
generating sequence, and the behaviour of the corresponding intensity: 

(i) 'crystalline type' spectra would come from sequences having AT or sc associated 
measures. The peak positions are stable upon size change, they are well indexed by 
one or more integers (rationals) in convenient reduced units, their intensity is not 
bounded, and can be described by some scaling law; 

(ii) 'random type' spectra would come from sequences having an AC associated 



Pipre 3. The calculated intensity of the Fourier transform of the generalized Ru 
Shapiro sequence defined in the t a t  (equation (10)). The number of poinrr in q is 16 
The intensity is bounded and normalized. The sequence length is 2'' = 1024 (a) 
2'2 = 4096 (b). 

idin- 
1384. 
and 
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measure with bounded intensities, random or deterministic as well. Peak positions 
show no stability upon size change and there is no simple description of intensity 
dependence on wavevector or sk3. 

This novel classifcation, which relies in particular on measuretheoretic properties 
and is now defined only in ID, could lay a basis for an extension of the concepts and 
methods of the crystallography of disordered systems. 
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Nole addcd m p m f .  Following the comment of our second referee, we recall the definition of the entropy 
S of an infinite sequence built on a lwc- l t e r  alphabet: 

1 S =  lim -loglp(n) 
"-m n 

where p(n)  is the number of blocks of length n in the infinite sequence. Obviously 

0 < p(n) < 2" 

and for automatic sequences (like lhe Thue-Mom and the RudinShapiro sequcncs) 

p(n) 6 Cn 

with C a wnstlnt, hence 

S=O 

in complete agreement with their compleleiy delerministic character (241 
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